AI创新链产业链融合发展 赋能数字经济新时代《中国人工智能专利技术分析报告(2022)》发布******
2022年12月,国家工业信息安全发展研究中心、工信部电子知识产权中心发布《AI创新链产业链融合发展赋能数字经济新时代—中国人工智能专利技术分析报告(2022)》,这是中心连续第5年就中国人工智能专利技术发展情况发布报告。
在新一轮科技革命和产业变革的大背景下,人工智能创新链产业链“双链”融合是释放数字化叠加倍增效应、驱动数字经济智能化跃升、打造产业综合竞争优势的必然路径。《报告》基于人工智能高价值专利增强创新链活力和助力产业链升级的角度,对深度学习、智能云、计算机视觉、智能语音、自然语言处理等十大技术领域进行专利申请趋势和分布构成分析,从“创造力”“保护力”“运用力”“竞争力”“影响力”五大方面对人工智能创新主体进行专利创新评价,研究人工智能专利如何高效助力各类“智慧+”应用场景落地,并对未来新兴人工智能技术应用和专利布局趋势作出研判。
图1 人工智能创新链产业链融合发展图谱
《报告》对人工智能高价值专利如何为创新链产业链融合发展保障护航进行了定量和定性分析。从行业公认的能够直观体现高价值专利的几个因素来看,自2011年、2012年开始,人工智能领域的中国专利奖占比逐年提高、专利许可转让数量呈上升趋势、专利诉讼遍及多个应用场景,展现了高价值专利对技术产业应用相辅相成的走势。
十大基础技术领域的专利数量稳步增长,极大激发AI创新链活力。深度学习、智能云、计算机视觉、智能语音、自然语言处理、大数据、知识图谱、智能推荐、智能芯片、量子计算等智能技术构成了人工智能创新链技术底座,也是产业链应用的基础技术。在技术与政策双红利的推动下,2016-2021年深度学习专利申请年均复合增长率达到53%,对人工智能的引领作用开始逐步凸显;相比之下,智能语音、自然语言处理、大数据、知识图谱和智能推荐领域的专利申请呈现稳步增长的态势,其中2021年自然语言处理的专利申请量仅次于深度学习、智能云和计算机视觉,发展势头强劲;智能芯片和量子计算由于起步相对较晚,相关专利储备较少,仍处于技术加速积累的阶段。国内创新主体也纷纷展开专利布局,不断增强市场竞争实力。例如百度公司在深度学习、智能云和智能驾驶等多个领域继续保持领先优势,寒武纪、浪潮和华为在智能芯片领域展现了充分的专注度和科研实力,清华大学、浙江大学等高校也在计算机视觉和自然语言处理等领域投入更多研发资源,成为基础攻关的重要力量。
图2 AI创新链十大基础技术专利申请趋势和分布构成
AI创新主体展现积极创新面貌,中小企业为产业发展增添新力量。从创新主体的申请量排名上看,百度、腾讯、国家电网、华为位列前四,专利申请数量均突破10000件,是我国AI领域技术创新的主力军。从专利授权量上看,仍然是上述四家企业位居前列,且百度公司专利申请量和授权专利持有量均排名第一。此外,腾讯专利2017-2020年腾讯专利申请年均复合增长率高达70%,在AI领域前四创新主体中申请量增速排名第一。从授权专利占比上看,申请量排名第七的清华大学和第九的浙江大学,均以45%的授权专利占比排名前两位。作为技术创新的重要源泉和吸纳劳动力就业的重要载体,大量中小企业也积极涌入人工智能赛道,在创新链一侧,我国人工智能领域企业主体共申请专利超过110万件,中小企业专利贡献超过90%。从产业链看,AI技术在中小企业中的普及率超过40%,语音识别、智能制造等技术在中小企业应用广泛,助力中小企业升级改造和智能化应用。
图3 创新链前十创新主体专利申请量和授权量
AI核心技术领域高价值专利集聚明显,产学研合作稳步推进。当前,智能云和深度学习是高价值专利数量最多的两个领域,百度得益于更早地投入与布局,展现专利申请数量与质量同步提升的发展态势。其他创新主体也结合自身业务发展方向,在不同的基础技术领域进行了有针对性的布局,如国家电网在深度学习和大数据领域,浪潮集团在智能云,阿里巴巴在智能推荐,平安科技在自然语言处理和计算机视觉都保持着创新优势。高等院校在人工智能领域技术创新活跃,涌现了大量专利成果,并通过与企业成立联合实验室和技术研发中心等方式,加快产学研用协同创新进程。截至2022年9月,我国人工智能领域产学研联合申请专利数量超2万余件,其中发明专利占比约90%,整体呈上升趋势增长,产业应用较为广泛。
图4 中国AI创新主体高价值专利技术布局
图5 AI领域产学研联合申请专利发展趋势图
AI专利助力新兴应用场景落地,推动产业链转型升级。目前,人工智能创新链的产业化应用主要集中在智慧城市、智慧交通、智慧医疗、智慧金融、智慧工业和智慧教育等领域。从技术应用的成熟度来看,不同AI技术在不同场景的应用呈现出阶梯式发展的态势。智慧工业是当前各创新主体主要布局的技术应用场景,AI专利申请量达到65万余件,其次就是智慧金融,专利申请量为30万余件。其中也涌现出“海淀城市大脑”“灵医智惠AI医疗品牌”“智慧交通解决方案TrafficGo2.0”“普惠金融人工智能开放平台”等众多优秀实践案例,推动高端智能技术与行业的融合发展。
“智慧+”场景应用创造出更多产业增长点,新兴人工智能技术生成数字经济发展新动能。AI在城市、交通、医疗、教育及工业等场景的融合应用加速,不断催生新业态新模式新产业。以智慧工业为例,将工业互联网、人工智能等在内的智能制造新技术与工具,集成到工业生产流程中,正在引领我国工业数字化新生态。报告显示,截至2022年9月,我国智慧工业领域申请专利共计65万余件。百度公司以近9000件专利总数位居第一,国家电网位居第二,其余创新主体专利申请量差距不大,发展潜力较强,各创新主体在智慧工业领域的专利布局积极竞争,难以拉开较大差距。与此同时,基于人工智能的深度学习、内容生成,语音、视觉识别技术越来越成熟,以元宇宙和数字人技术为代表的新兴技术,也迎来了专利的快速积累阶段,百度、腾讯、华为等企业积极开展前沿专利布局,探索人机交互发展和应用,助力数字经济高质量发展。
图6 中国元宇宙专利主要申请人排名
图7 中国数字人专利技术申请-公开趋势
《报告》结合当前人工智能知识产权生态建设和全产业链专利布局情况,对产业高质量可持续发展提出总结与展望。人工智能是新一轮科技革命和产业变革的重要驱动力量,发展人工智能是支撑科技自立自强、实现高质量发展的重要战略。党的二十大报告提出,推动战略性新兴产业融合集群发展,构建新一代信息技术、人工智能、生物技术、新能源、新材料、高端装备、绿色环保等一批新的增长引擎。当前,人工智能技术与5G、云计算、大数据的融合发展已将成为推动数字经济发展的动能源泉,今后将进一步与其他数字技术相互碰撞出全新的科技驱动力。随着人工智能创新发展跨入新的历史阶段,专利申请总量突破百万件,专利申请趋势仍在快速增长,技术人才规模不断扩大,产业融合广泛深入,应当在底层关键技术突破、建设知识产权生态、大中小企业共同完善专利布局、开辟更广泛应用场景等方面发力,实现创新链与产业链的协同发展。
时空穿越不再是梦?科学家成功模拟“全息虫洞”!******
近日,科学家打造出
“全息虫洞”的消息冲上热搜
引发了大家的讨论
虫洞是什么?
我们真的能用它穿越时空吗?
今天一起了解虫洞
01虫洞?是虫子住的洞吗?
宇宙中的虫洞是科学家推测可能存在的一种特殊隧道,它的两头连接着两个遥远的时空,理论上说,如果能从虫洞的一端穿越到另一端,就能实现超越光速的时空旅行。
电影《星际穿越》中结尾主角就是进入了虫洞,发生了时空穿越。感兴趣的同学可以去看看哦!
图源:截图 电影星际穿越中的画面
要理解虫洞,我们首先要理解“黑洞”和“白洞”。在霍金的两大科普著作《时间简史》《果壳中的宇宙》的帮助下,黑洞这一概念早已深入人心。它是在恒心死亡时,由于体积收缩,密度变大,获得使光也无法逃脱的巨大密度的一种天体。而所谓白洞,其实就是和黑洞具有相反性质的特殊天体,特点是不断往外“吐”出东西,只发射而不吸收。
一个吞噬一切,一个“吐出”一切,大家可以想象一下,如果一个黑洞恰好连上了一个白洞时会怎么样呢?这时就会形成虫洞(worm hole)。
图源:中科院理论物理研究所 虫洞示意图
1915年,爱因斯坦提出了广义相对论,在爱因斯坦的理论中,空间和时间不再是绝对的、不可变的,而是可塑的、相互依存的,且它们会受物质存在的影响。1935年,爱因斯坦和他的助手罗森在广义相对论的框架下研究黑洞,首次提出“爱因斯坦-罗森桥”的概念,这座“桥”连接了时空中两个不同区域的通道。上世纪50年代,物理学家惠勒将这座桥命名为“虫洞”。
这听起来是不是很令人心动?进入虫洞,你可能会出现在宇宙的任意一个角落,甚至穿越时空,改写你的人生,重新选择你曾经后悔的事。然而,虽然广义相对论允许虫洞的存在,物理学家还从未在宇宙中观测到虫洞,目前只有黑洞被人类实际观测。
02量子虫洞又是啥?
虽然我们还没有在宇宙中发现虫洞,但现在科学家们创造出了虫洞,还观察到了信息在虫洞之间传递的现象。不过,先别想着穿越时空,这个虫洞并非上述所讲的引力虫洞,而是一个量子虫洞。
日前,英国《自然》(Nature)杂志发表的一篇论文首次报道了利用一台量子处理器对全息虫洞进行量子“模拟”。这个全息虫洞成功地将量子态通过虫洞,由一个量子系统传递到了另一个量子系统。
如果我们想象中可以时空旅行的虫洞叫作“时空虫洞”的话,量子态的量子虫洞则可以称之为“微型虫洞”。
那么,研究量子虫洞有什么用呢?
这是因为,广义相对论和量子力学虽然各自都发展了很长一段时间,但它们之间仍然有一个根本性的“冲突”——量子引力。
具体来说, “广义相对论”描述了引力且在恒星、行星、银河上等大尺度上都适用;而“量子力学”描述了其他3种作用在微观尺度的基本力。这二者是否有“握手言欢”的可能?这就要看量子引力的表现。
物理学家们当然想通过实验去检验,但很遗憾,量子引力的能量与尺度,此前的实验室条件是无法模拟和观测的。而这就是“全息”的用武之地,它可以帮助物理学家创建一个与原始系统相当,但不太复杂的系统。这类似于用二维全息图显示三维图像的细节。
03量子虫洞是怎么创造出来的?
2019年谷歌的物理学家们提出了一种实验假说,认为一个在物理实验室中可以再造的量子态,能被解释为在两个黑洞之间的虫洞中穿越的信息。
现在,来自谷歌、MIT、费米实验室和加州理工学院的科学家们,用9个量子位、1台量子计算机模拟出了对应的量子动力学。在同一个量子芯片中,他们创建了两个纠缠的量子系统,并将一个量子位放入其中一个量子系统。结果,他们在另一个量子系统中观察到了这个量子位“穿越虫洞”而来的信息,结果符合预期的引力性质。
这是什么意思?大家可以设想在两组纠缠粒子之间,穿上一根电线或其它任何的物理连接,让粒子们编码出虫洞的两个口。
在这种耦合作用下,操作其中一侧的粒子,会引起另一侧粒子的变化。这样就有可能在两侧粒子之间撑开一个虫洞。
图片来源:inqnet/A.Mueller 量子计算机的模拟显示了信息如何通过虫洞
尽管存在争议,但是这项前所未有的实验,探索了时空以某种方式从量子信息中产生的可能性。随着量子装置的不断改进,错误率会更低,芯片会更强,那么对引力现象的研究也会更加深入。
END
资料来源:中科院物理所、极目新闻、科技日报、环球科学、量子位
整理:董小娴
(文图:赵筱尘 巫邓炎)